Advances in Bioenergy Production Using Fast Pyrolysis and Hydrothermal Processing

Author:

R. Chandraratne Meegalla,Gezae Daful Asfaw

Abstract

This chapter provides an overview of current efforts and advances as well as environmental and economic aspects of fast pyrolysis and hydrothermal processing, which are potential technologies for bioenergy production, mainly bio-oil and syngas. Biomass is presently the primary bioenergy resource in the world. The chapter presents a brief discussion of sources and compositions of biomass. Biomass is converted to various products using thermochemical conversions. Pyrolysis is a thermochemical process that converts biomass into carbon-rich solid residue, condensable vapors, and non-condensable gases in the absence of oxygen. It is a promising technology for converting biomass into renewable biofuels with environmental and economic advantages. Pyrolysis processes are classified based on their operating conditions and desired products. Two thermochemical processes, fast pyrolysis and hydrothermal processing are reviewed. Fast pyrolysis produces a higher quantity and quality of bio-oil and syngas than slow and intermediate pyrolysis processes. Hydrothermal processing converts wet biomass into carbonaceous biofuel. The ability to produce higher-value bioenergy by these pyrolysis technologies depends on the feedstock and operating condition of the pyrolysis processes. This chapter will present the most promising features of fast pyrolysis and hydrothermal processing along with their optimal pyrolysis conditions in maximizing the production of biofuels.

Publisher

IntechOpen

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3