Synthesis of Pt-Mo/WMCNTs Nanostructures Reduced by the Green Chemical Route and Its Electrocatalytic Activity in the ORR

Author:

Torres-Santillan Esther,Capula-Colindres Selene,Teran Gerardo,M. Reza-San German Carmen,Estrada Flores Miriam,Guadalupe Rojas Valencia Oscar

Abstract

Platinum (Pt) and molybdenum (Mo) nanoparticles were supported on multiwall carbon nanotubes (MWCNTs) by a green chemical route. Different relations of Pt:Mo (10:0, 8:2, 5:5, 2:8, and 0:10, respectively) in weight percent were compared to their electrocatalytic activity in the oxygen reduction reaction (ORR) in an acid medium. The morphologies and the structure were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The rotary disc electrode (RDE) and linear voltammetry (LV) techniques were employed to observe the electron transfer and mass transport phenomena. The surface activation of the samples was conducted by cyclic voltammetry (CV) technique According to the TEM analysis. The TEM analysis, shows that Mo and Pt nanoparticles have a good dispersion on the tubular carbon support, with sizes between 3.94 and 10.97 nm. All Pt-containing ratios had exhibited a first-order transfer in the ORR without inhibition of the reaction. Molybdenum is a reducing agent (oxyphilic metal) that benefits the adsorption of oxygenated species. The Pt:Mo 8:2 wt.% ratio presents the maximum benefits in the kinetic parameters. The Mo10/MWCNTs nanostructure inhibits the ORR due to the strong bonds it presents with oxygen. Molybdenum at low concentrations with platinum is conducive to oxygen molecule adsorption-desorption by increasing the ORR’s electroactivity.

Publisher

IntechOpen

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3