Aerodynamics of Low-Rise Buildings: Challenges and Recent Advances in Experimental and Computational Methods

Author:

Mousaad Aly Aly,Khaled Faiaz,Gol-Zaroudi Hamzeh

Abstract

Buildings are bluff bodies, compared to streamline objects, such as airfoil. Wind flow over buildings leads to separation and hence a complex spatial and temporal mechanism that governs the nature and intensity of aerodynamic forces. This complexity mainly comes from the transient nature of incident turbulent winds and the fluctuating flow pattern in the separation bubble. The study of building aerodynamics is vital for the evaluation of cladding pressures, drag, shear, and uplift forces that are essential for safe and economic design. Flow separation makes it challenging to estimate loads without referring to direct physical and/or computational simulation. For several decades, aerodynamic testing has been employed for the estimation of wind pressures and forces on buildings. However, for residential homes and low-rise buildings, it has been always a challenge to predict full-scale pressures by traditional wind tunnel testing, as per the lack of large turbulence and Reynolds number effects, among other factors. The mismatch in flow physics makes it difficult to scale up wind-induced loads as the process can be highly nonlinear, which is the case when full-scale pressure coefficients do not meet those from small-scale aerodynamic testing. This chapter presents the challenges in the modeling and evaluation of aerodynamic forces on low-rise buildings, along with recent advances in both experimental and computational methods.

Publisher

IntechOpen

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3