Tuning Phage for Cartilage Regeneration

Author:

Joseph Atia Ayariga,Daniel Azumah Abugri,Deepa Bedi,Dean Derrick

Abstract

The ever-broadening scope of phage research has left behind the simplistic view of studying phages as just model systems in phage biology to a much broader application ranging from ecological management to immunity. Improved throughput technology in crystallography and structural studies has helped our understanding of these systems as supramolecular machines that possess the capacity of self-assembly. The idea of phages as self-assembling supramolecular nano-machines that are bioactive biomaterials in characteristics, tunable and easily producible have lent its utility to recent fields such as regenerative medicine and tissue engineering. Due to low metabolic activity and slow nutrient diffusion within cartilage, damage to this tissue often inevitably consist of slow and delayed regeneration and healing, the restriction of blood from reaching most part of this tissue and the resultant limitations in the availability of oxygen and other essential amino acids dictates a very slow systemic metabolic response also since transports system in this tissue have to employ less speedy forms. Cartilage regeneration therefore is a huge challenge. This chapter takes a look at the application of the phage display technology in cartilage tissue regeneration.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3