A Study on Fiber Optic Temperature Sensor Using Al2O3 as High Index Overlay for Solar Cell Applications

Author:

Narasimman Subramaniyam,Narayanan Balakrishnan Lakshmi,Chandrasekhar Arunkumar,C. Alex Zachariah

Abstract

Recently, the performance of solar cell is impacted by rising panel temperatures. For solar cells to work at their best and have the longest possible useful life, the temperature of the panels must be kept at an ideal level. Current temperature sensors have a slow response time, poor accuracy, and low resolution. Meanwhile, Al2O3 and its derivatives have demonstrated a noteworthy role in temperature sensing applications due to its greater surface area, ease of synthesis, tailored optical characteristics, high melting point, and high thermal expansion coefficient. Al2O3-based nanoparticles have been employed in fiber optic-based temperature sensors as a sensing layer, a sensitivity improvement material, and a sensing matrix material. In this chapter, we discuss the function of Al2O3-based nanomaterials in evanescent wave-based temperature sensors, sensing characteristics such as sensitivity, linearity, and repeatability. The ZAZ-based sensor (Section 3.1) shows an operating temperature range between 100.9°C and 1111.0°C, the temperature sensitivity becomes 1.8 × 10−5/°C. The fabricated sensor had a linearity of 99.79%. The synthesized Al2O3 nanoparticles (Section 3.2) were given better linearity and high sensitivity (~27) at 697 nm compared with other sensing materials such as ZnO, SnO2, TiO2. The Al2O3-MgO (50–50%) (Section 3.3) demonstrated an ultrahigh sensitivity of 0.62%/°C with a better linear regression coefficient of 95%. The present advances and problems are also discussed in detail.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3