Hybrid Nature Properties of Tl10-xATe6 (A = Pb and Sn) Used as Batteries in Chalcogenide System

Author:

Muhammad Khan Waqas,Hussain Shah Wiqar

Abstract

In future, the most common batteries will be the thallium. As there is many types of batteries but the thallium batteries are better from them. In here, we have made the compound which is more positive work than the other batteries. The different elements are doping in the tellurium telluride to determine the different properties like electrical and thermal properties of nanoparticles. The chalcogenide nanoparticles can be characteristics by the doping of the different metals which are like the holes. We present the effects of Pb and Sn doping on the electrical and thermoelectric properties of Tellurium Telluride Tl10-xPbxTe6 and Tl10-xSnxTe6 (x = 1.00, 1.25, 1.50, 1.75, 2.00) respectively, which were prepared by solid state reactions in an evacuated sealed silica tubes. Structurally, all these compounds were found to be phase pure as confirmed by the x-rays diffractometery (XRD) and energy dispersive X-ray spectroscopy (EDS) analysis. The thermo-power or Seebeck co-efficient (S) was measured for all these compounds which show that S increases with increasing temperature from 295 to 550 K. The Seebeck coefficient is positive for the whole temperature range, showing p-type semiconductor characteristics. Similarly the electrical conductivity (σ) and the power factors have also complex behavior with Pb and Sn concentrations. The power factor (PF = S2σ) observed for Tl10-xPbxTe6 and Tl10-xSnxTe6 compounds are increases with increase in the whole temperature range (290 K–550 K) studied here. Telluride’s are narrow band-gap semiconductors, with all elements in common oxidation states, according to (Tl+)9(Pb3+)(Te2−)6 and (Tl+)9(Sn3+)(Te2−)6. Phases range were investigated and determined with different concentration of Pb and Sn with consequents effects on electrical and thermal properties.

Publisher

IntechOpen

Reference20 articles.

1. T. Caillat, J. Fleurial, A. Borshchevsky, AIP conf. Proc. 420, 1647 (1998).

2. R.J. Campana, Adv. Ener. Conv. 2, 303 (1962).

3. R.J. Mehta, Y Zhang, C. Karthika eta, Nature Materials, 11, 233-240 (2012).

4. G.S. Nolas, J. Poon and M. Kanatzidis, MRS, Bull 31199 (2006),

5. B.A. Kuropaatawa, A. Assoud, H. Klienke, J. Alloys and Compounds 509, 6768 (2011).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3