Climate Change and Its Potential Impacts on Insect-Plant Interactions

Author:

Karthik Somala,Sai Reddy M.S.,Yashaswini Gummudala

Abstract

The most dynamic and global environmental issue to date is climate change. The consequences of greenhouse effect and climate change from rising temperatures, frequent droughts, irregular rainfall, etc. are already evident. Insects and plants are affected by climate change and extreme weather events and the direct impact of anthropogenic climate change has been reported on every continent, in every ocean and in most major taxonomic groups. In the modern period, as a result of natural cycles and anthropogenic activities and their effects on the global climate, plants are typically susceptible to new environmental factors, i.e. higher levels solar radiation, rise in temperatures, greenhouse effect and changes in rainfall patterns over the seasons. Increased temperatures, CO2 and rapid changes in rainfall patterns can dramatically alter the biochemistry of plants and thus plant defence responses. This can have important implications in insect fertility, feeding rates, survival, population size, and dispersal. The relationships between plants and insects are thus changed with significant consequences for food security and natural ecosystems. Similarly, mismatches between plants and insect pollinators are caused by the acceleration of plant phenology by warming. Human nutrition which depends on insect pollination can be affected with reduction in plant reproduction and fitness. Thus, understanding abiotic stress reactions in plants and insects is relevant and challenging in agriculture. In the preparation and implementation of effective strategies for future insect pest management programmes, the impact of climate change on crop production, mediated by changes in the populations of extreme insect pests should be carefully considered.

Publisher

IntechOpen

Reference79 articles.

1. IPCC. Climate change 2001: scientific basis, Contribution of working group I to the third assessment report of the intergovernmental panel climate change (IPCC). Cambridge University Press. 2001; Cambridge http://www.grida.no/climate/ipcc_tar/

2. Bale JSB, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Global Change Biology. 2002; 8: 1-16

3. Moore BA, Allard GB. Climate change impacts on forest health. Forest Health and Biosecurity Working Papers, Forestry Department Food and Agriculture Organization of the United Nations. Working Paper FBS/9E, FAO, Rome, Italy. 2008; pp 35

4. Melillo JM, Richmond TT, Yohe G. Climate change impacts in the United States. Third National Climate Assessment. 2014; 52

5. Florides LA, Christodoulides P, Messaritis V. Global warming and CO2. Vs sun. In: Harris, S. A. (Ed.). Global Warming. Croatia, IntechOpen. 2011: 23-62

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3