Photocatalytic Applications of Titanium Dioxide (TiO2)

Author:

ul Haq Atta,Saeed Muhammad,Gul Khan Samreen,Ibrahim Muhammad

Abstract

Water pollution is one the fundamental problems that have got the serious concerns of the researchers. Water poluution arises due to a number of reasons including domestic, industrial, agricultural, scinec and technology. The textile industry is the main industry that releases the dyes contaminated wastewater to the environment. A varities of protocols have been attempeted for the removal of dyes from aqueous body. Photocatalysis is one of the effective techniques which offer opportunities to overcome the aqueous pollution caused by rapid industrialization and urbanization. The semiconductor metal oxides used as photocatalysts are capable to provide a sustainable and clean ecosystem due to the tunable physiochemical characteristics of semiconductor metal oxides. Titanium dioxide (TiO2) is one of the metal oxides that can be effectively employed as a photocatalyst in the abatement of aqueous pollution due to organic compounds. The catalytic performance of titanium dioxide depends on several parameters like its crystallinity, surface area, and morphology. Titanium dioxide has shown good performance in the different photocatalytic systems, however, the characteristics like wide band gap and low conductivity limit the photocatalytic performance of titanium dioxide. Various attempts have been made to improve the photocatalytic performance of titanium dioxide. Herein, we summarize the various attempts to improve the photocatalytic performance of titanium dioxide in the abatement of aqueous pollution. The attempts made for the improvement of photocatalytic performance of titanium dioxide include modifications in composition, doping of other metal, and formation of heterojunctions with other metal oxides.

Publisher

IntechOpen

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3