Classification in Multi-Label Datasets

Author:

Mahani Aouatef

Abstract

Multi-label datasets contain several classes, where each class can have multiple values. They appear in several domains such as music categorization into emotions and directed marketing. In this chapter, we are interested in the most popular task of Data Mining, which is the classification, more precisely classification in multi-label datasets. To do this, we will present the different methods used to extract knowledge from these datasets. These methods are divided into two categories: problem transformation methods and algorithm adaptation ones. The methods of the first category transform multi-label classification problem into one or more single classification problems. While the methods of the second category extend a specific learning algorithm, in order to handle multi-label datasets directly. Also, we will present the different evaluation measures used to evaluate the quality of extracted knowledge.

Publisher

IntechOpen

Reference36 articles.

1. Dekel O, Shamir O. Multiclass-multilabel learning when the label set grows with the number of examples. In: Proceedings of 13th International Conference on the Artificial Intelligence and Statistics (AISTAT (2010)), 13-15 May 2010; Chia Laguna, Sardinia, Italy. 2010

2. Deng J, Dong W, Socher R, Li Li-Jia, Li K, Li Fei-Fei. Imagenet: A large scale hierarchical image database. In: Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009), 20-25 June 2009

3. Miami, Florida, USA. 2009. pp. 248-255

4. Nguyen CT, Zhan DC, Zhou ZH. Multi-modal image annotation with multi-instance multi-label LDA. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI'13), 3-9 August 2013

5. Beijing, China. 2013. pp. 1558-1564

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3