Low Dimensional Nanostructures: Measurement and Remediation Technologies Applied to Trace Heavy Metals in Water

Author:

Luisa García-Betancourt María,I. Ramírez Jiménez Sandra,González-Hodges Apsahara,E. Nuñez Salazar Zandra,Leilani Escalante-García Ismailia,Ramírez Aparicio Jeannete

Abstract

A nanostructure is a system in which at least one external dimension is in the nanoscale, it means a length range smaller than 100 nm. Nanostructures can be natural or synthetic and determine the physicochemical properties of bulk materials. Due to their high surface area and surface reactivity, they can be an efficient alternative to remove contaminants from the environment, including heavy metals from water. Heavy metals like mercury (Hg), cadmium (Cd), arsenic (As), lead (Pb), and chromium (Cr) are highly poisonous and hazardous to human health due to their non-biodegradability and highly toxic properties, even at trace levels. Thus, efficient, low-cost, and environmentally friendly methodologies of removal are needed. These needs for removal require fast detection, quantification, and remediation to have heavy metal-free water. Nanostructures emerged as a powerful tool capable to detect, quantify, and remove these contaminants. This book chapter summarizes some examples of nanostructures that have been used on the detection, quantification, and remediation of heavy metals in water.

Publisher

IntechOpen

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3