Perspective Chapter: Deep Reinforcement Learning for Co-Resident Attack Mitigation in The Cloud

Author:

Cui Suxia,Homsi Soamar

Abstract

Cloud computing brings convenience and cost efficiency to users, but multiplexing virtual machines (VMs) on a single physical machine (PM) results in various cybersecurity risks. For example, a co-resident attack could occur when malicious VMs use shared resources on the hosting PM to control or gain unauthorized access to other benign VMs. Most task schedulers do not contribute to both resource management and risk control. This article studies how to minimize the co-resident risks while optimizing the VM completion time through designing efficient VM allocation policies. A zero-trust threat model is defined with a set of co-resident risk mitigation parameters to support this argument and assume that all VMs are malicious. In order to reduce the chances of co-residency, deep reinforcement learning (DRL) is adopted to decide the VM allocation strategy. An effective cost function is developed to guide the reinforcement learning (RL) policy training. Compared with other traditional scheduling paradigms, the proposed system achieves plausible mitigation of co-resident attacks with a relatively small VM slowdown ratio.

Publisher

IntechOpen

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3