Author:
Zhang Ran,Oerlemans Rick,Wang Chao,Zhang Lili,R. Groves Matthew
Abstract
Since the advent of the twentieth century, several severe virus outbreaks have occurred—H1N1 (1918), H2N2 (1957), H3N2 (1968), H1N1 (2009) and recently COVID-19 (2019)—all of which have posed serious challenges to public health. Therefore, rapid identification of efficacious antiviral medications is of ongoing paramount importance in combating such outbreaks. Due to the long cycle of drug development, not only in the development of a “safe” medication but also in mandated and extensive (pre)clinical trials before a drug can be safely licensed for use, it is difficult to access effective and safe novel antivirals. This is of particular importance in addressing infectious disease in appropriately short period of time to limit stress to ever more interlinked societal infrastructures; including interruptions to economic activity, supply routes as well as the immediate impact on health care. Screening approved drugs or drug candidates for antiviral activity to address emergent diseases (i.e. repurposing) provides an elegant and effective strategy to circumvent this problem. As such treatments (in the main) have already received approval for their use in humans, many of their limitations and contraindications are well known, although efficacy against new diseases must be shown in appropriate laboratory trials and clinical studies. A clear in this approach in the case of antivirals is the “relative” simplicity and a high degree of conservation of the molecular mechanisms that support viral replication—which improves the chances for a functional antiviral to inhibit replication in a related viral species. However, recent experiences have shown that while repurposing has the potential to identify such cases, great care must be taken to ensure a rigourous scientific underpinning for repurposing proposals. Here, we present a brief explanation of drug repurposing and its approaches, followed by an overview of recent viral outbreaks and associated drug development. We show how drug repurposing and combination approaches have been used in viral infectious diseases, highlighting successful cases. Special emphasis has been placed on the recent COVID-19 outbreak, and its molecular mechanisms and the role repurposing can/has play(ed) in the discovery of a treatment.
Reference160 articles.
1. Biotechnology Innovation Organization. Clinical Development Success Rates and Contributing Factors 2011-2020 [Internet]. Available from: https://www.bio.org/clinical-development-success-rates-and-contributing-factors-2011-2020
2. Hwang TJ, Carpenter D, Lauffenburger JC, Wang B, Franklin JM, Kesselheim AS. Failure of investigational drugs in late-stage clinical development and publication of trial results. JAMA Internal Medicine. 2016;176(12):1826-1833
3. Bok K, Sitar S, Graham BS, Mascola JR. Accelerated COVID-19 vaccine development: Milestones, lessons, and prospects. Immunity. 2021;54(8):1636-1651. Available from: https://www.sciencedirect.com/science/article/pii/S1074761321003034
4. Tebas P, Yang S, Boyer JD, Reuschel EL, Patel A, Christensen-Quick A, et al. Safety and immunogenicity of INO-4800 DNA vaccine against SARS-CoV-2: A preliminary report of an open-label, Phase 1 clinical trial. EClinicalMedicine. 2021;31:100689. Available from: https://www.sciencedirect.com/science/article/pii/S2589537020304338
5. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: Progress, challenges and recommendations. Nature Reviews. Drug Discovery. 2019;18(1):41-58. Available from: https://www.ncbi.nlm.nih.gov/pubmed/30310233
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Antivirals: Approaches and the Way Forward;Livestock Diseases and Management;2024