Author:
Yang Xining,D. Scott Mark
Abstract
T cell-mediated immunomodulation can be, in simple terms, defined as altering the normal Treg:Teff ratio. Immunosuppression skews the net Treg:Teff ratio toward the ‘tolerogenic’ Treg component, while immunoactivation skews the response toward the ‘proinflammatory’ Teff component. In the treatment of autoimmune diseases, achieving an immunosuppressive state is a desirable goal in order to prevent ongoing injury by activated Teff cells. In contrast, an innate, or induced, immunosuppressive state can be deleterious and prevent pathogen-induced disease while allow for the progression of cancer. Indeed, a current goal of cancer therapy is attenuating an existing endogenous immunosuppressive state that prevents effective T cell-mediated immunorecognition of cancer cells. Thus, the biological modulation of the Treg:Teff ratio provides a unique approach for treating both autoimmune diseases and cancers. Using a biomanufacturing system, miRNA-enriched immunotherapeutic has been generated that either induce (TA1) or overcome (IA1) an immunosuppressive state. As will be shown, these therapeutics show efficacy both in vitro and in vivo in the prevention of autoimmune Type 1 diabetes and in enhancing the ability of resting immune cells to recognize and inhibit cancer cell growth. The successful development of these cost-effective, and easily biomanufactured, secretome-based therapeutics may prove useful in treating both autoimmune diseases and cancer.