Author:
Guettari Moez,El Aferni Ahmed
Abstract
Efforts to combat the Covid-19 pandemic have not been limited to the processes of vaccine production, but they first began to analyze the dynamics of the epidemic’s spread so that they could adopt barrier measures to bypass the spread. To do this, the works of modeling, predicting and analyzing the spread of the virus continue to increase day after day. In this context, the aim of this chapter is to analyze the propagation of the Coronavirus pandemic by using the percolation theory. In fact, an analogy was established between the electrical conductivity of reverse micelles under temperature variation and the spread of the Coronavirus pandemic. So, the percolation theory was used to describe the cumulate infected people versus time by using a modified Sigmoid Boltzman equation (MSBE) and several quantities are introduced such as: the pandemic percolation time, the maximum infected people, the time constant and the characteristic contamination frequency deduced from Arrhenius equation. Scaling laws and critical exponents are introduced to describe the spread nature near the percolation time. The speed of propagation is also proposed and expressed. The novel approach based on the percolation theory was used to study the Coronavirus (Covid-19) spread in five countries: France, Italy, Germany, China and Tunisia, during 6 months of the pandemic spread (the first wave). So, an explicit expression connecting the number of people infected versus time is proposed to analyze the pandemic percolation. The reported MSBE fit results for the studied countries showed high accuracy.