Glomalin Arbuscular Mycorrhizal Fungal Reproduction, Lifestyle and Dynamic Role in Global Sustainable Agriculture for Future Generation

Author:

Prasad Kamal,Khare Agam,Rawat Prateek

Abstract

Glomalin, a type of glycoprotein produced by arbuscular mycorrhizal fungi in the phylum Glomeromycota, contributes to the mitigation of soil degradation. Moreover, AM fungi and glomalin are highly correlated with other soil physico-chemical parameters and are sensitive to changes in the environment; also, they have been recommended for monitoring the recovery of degraded soil or stages of soil degradation. AM fungi are commonly known as bio-fertilisers. Moreover, it is widely believed that the inoculation of AM fungi provides tolerance to host plants against various stressful situations like heat, salinity, drought, metals and extreme temperatures. AM fungi, being natural root symbionts, provide essential plant inorganic nutrients to host plants, thereby improving growth and yield under unstressed and stressed regimes. The role of AM fungi as a bio-fertiliser can potentially strengthen plants’ adaptability to changing environment. They also improve plant resilience to plant diseases and root system development, allowing for better nutrient absorption from the soil. As a result, they can be utilised as both a biofertilizer and a biocontrol agent. Present manuscript represents the potential of AM fungi as biostimulants can probably strengthen plants’ ability to change the agriculture system for green technology.

Publisher

IntechOpen

Reference111 articles.

1. Prasad K. Studies on Ecological Factors Affecting Vesicular Arbuscular Mycorrhizal Infection in Sugarcane. Muzaffarpur, Bihar, India: B.R. Ambedkar Bihar University; 1993

2. Smith SE, Read DJ. Mycorrhizal symbiosis. San Diego, London, New York, Boston, Sydney, Tokyo, Toronto: Academic Press, Harcourt Brace and Company, Publishers; 1997

3. Prasad K. Biofertilizers: A new dimension for agriculture and environmental development to improve production in sustainable manner. Journal of Basic and Applied Mycology. 2015;11(1& II):5-13

4. Prasad K. Biology, diversity and promising role of mycorrhizal entophytes for green technology. In: Maheshwari DK, editor. Endophytes: Biology and Biotechnology, Series Sustainable Development and Biodiversity 15. Springer International Publishing AG: Switzerland; 2017. pp. 257-301

5. Bisleski RL. Phosphate pools, phosphate transport, and phosphate availability. Annual Review of Plant Physiology. 1973;24:225-252

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3