Inflammatory Diseases and the Role of n-7 Unsaturated Fatty Acids as Functional Lipids

Author:

Nakamura Akio,Nakamura Hikari,Kawaharada Ritsuko

Abstract

With the increasing childbearing age, the number of mothers with diabetes and gestational diabetes is escalating. Maternal hyperglycemia creates an intrauterine hyperglycemic environment via the placenta, which causes signaling abnormalities in various fetal organs due to excessive glycation. This is associated with future disease development in the child. We have shown that insulin signaling defects are induced in fetal cardiomyoblasts using a rat gestational diabetes mellitus model and cellular models. Furthermore, we reported that maternal intake of eicosapentaenoic acid (EPA), an n-3 unsaturated fatty acid, during pregnancy can ameliorate this signaling defect. However, EPA has anti-coagulant effects, and the pollution of marine fish oil, the source for EPA supplements, raises concerns about active intake by pregnant women. Recently, palmitoleic acid, an n-7 unsaturated fatty acid, garnered attention as a candidate functional lipid alternative to EPA because it has been reported to have anti-obesity, lipid metabolism improvement, and cardioprotective effects similar to those of EPA. Palmitoleic acid has cis and trans structural isomers, which differ in their food intake route and metabolism in humans. This article introduces recent findings on the biological functions of palmitoleic acid in lifestyle-related diseases and cardiovascular diseases, ranging from basic research to clinical studies.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3