Interpretation of Water Quality Data in uMngeni Basin (South Africa) Using Multivariate Techniques

Author:

Rangeti Innocent,Dzwairo Bloodless

Abstract

The major challenge with regular water quality monitoring programmes is making sense of the large and complex physico-chemical data-sets that are generated in a comparatively short period of time. Consequentially, this presents difficulties for water management practitioners who are expected to make informed decisions based on information extracted from the large data-sets. In addition, the nonlinear nature of water quality data-sets often makes it difficult to interpret the spatio-temporal variations. These reasons necessitated the need for effective methods of interpreting water quality results and drawing meaningful conclusions. Hence, this study applied multivariate techniques, namely Cluster Analysis and Principal Component Analysis, to interpret eight-year (2005–2012) water quality data that was generated from a monitoring exercise at six stations in uMngeni Basin, South Africa. The principal components extracted with eigenvalues of greater than 1 were interpreted while considering the pollution issues in the basin. These extracted components explain 67–76% of the water quality variation among the stations. The derived significant parameters suggest that uMngeni Basin was mainly affected by the catchment’s geological processes, surface runoff, domestic sewage effluent, seasonal variation and agricultural waste. Cluster Analysis grouped the sampling six stations into two clusters namely heavy (B) or low (A), based on the degree of pollution. Cluster A mainly consists of water sampling stations that were located in the outflow of the dam (NDO, IDO, MDO and NDI) and its water can be described as of fairly good quality due to dam retention and attenuation effects. Cluster B mainly consist of dam inflow water sampling stations (MDI and IDI), which can be described as polluted if compared to cluster A. The poor quality water observed at Cluster B sampling stations could be attributed to natural and anthropogenic activities through point source and runoff. The findings could assist in determining an appropriate set of water quality parameters that would indicate variation of water quality in the basin, with minimum loss of information. It is, therefore, recommended that this approach be used to assist decision-makers regarding strategies for minimising catchment pollution.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3