Author:
Tugce Senberber Dumanli Fatma
Abstract
Magnesium borates are compounds including mainly magnesium (Mg), boron (B) oxygen (O), and hydrogen (H). Magnesium borates are traditionally famous for their strong thermoluminescence, mechanical and thermal features due to their high elasticity coefficient, corrosion, and heat resistance. Because of being beneficial, especially in the applications such as thermoluminescence and X-ray screening, and ease of synthesis, magnesium borates are produced by using different experimental procedures exhibiting different characteristics. Main traditional synthesis techniques can be classified as liquid state and solid-state synthesis methods. With the help of novelties in synthesis technology, new techniques are beginning to emerge in magnesium borate syntheses such as hybrid synthesis, ultrasound, microwave, and capping agent addition. The strengthened characteristics of the compounds would lead to new applications such as stomach cancer chemotherapy and wastewater treatment. In this chapter, it is aimed to make a comparison between the characteristics of synthesized magnesium borates and their properties. In addition, new types of magnesium borates obtained by various synthetic techniques are expected to be useful for industrial applications such as space technology, radiation dosimetry, X-ray screening, ion batteries, and hydrocarbon reaction catalysis. Such classification of properties and the synthesis techniques will enlighten the relationship between the characteristics and novel applications of magnesium borates.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Effect of Capping Agents on the Nanoscale Metal Borate Synthesis;Boron, Boron Compounds and Boron-Based Materials and Structures;2024-01-17