Starch Biodegradable Films Produced by Electrospraying

Author:

Cuellar Sánchez Verónica,González Vázquez Marcela,B. García-Hernández Alitzel,S. Serrano-Villa Fátima,de la Paz Salgado Cruz Ma.,García Bórquez Arturo,Morales-Sánchez Eduardo,R. Farrera-Rebollo Reynold,Calderón-Domínguez Georgina

Abstract

The use of particles obtained from biopolymers is of interest in fields such as bioengineering and nanotechnology, with applications in drug encapsulation, tissue engineering, and edible biofilms. A method used to obtain these particles is electrohydrodynamic atomization (EHDA), which can generate different structures depending on the process conditions and raw materials used, opening a wide range of research in the biopolymers field, where starch is considered an excellent material to produce edible and biodegradable films. This chapter is a compilation and analysis of the newest studies of this technique, using starch with or without modifications to prepare films or membranes and their potential applications. A systematic literature review, focused on starch, and EHDA was carried out, finding 158 articles that match these criteria. From these results, a search inside them, using the words edible and biodegradable was conducted, showing 93 articles with these key words. The information was analyzed observing the preference to use corn, potato, rice, and cassava starches, obtaining mainly scaffolds and fibers and, in much less proportion, films or capsules. This review shows a window of opportunity for the study of starchy materials by EHDA to produce films, coatings, and capsules at micro or nano levels.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3