Understanding the Adaptive Mechanisms of Plant in Low Phosphorous Soil

Author:

Muhammad Aslam Mehtab,Akhtar Kashif,K. Karanja Joseph,Noor-ul-Ain ,Ullah Haider Fasih

Abstract

With the rapidly increasing world population and escalating food demand in the face of changing weather patterns, it is imperative to improve our understanding of how root functional traits enhance water acquisition and nutrient foraging for improved crop yields. Phosphorous (P) is poorly bioavailable element and essential for plant growth and development. Natural P reserves are very limited, and its availability is greatly influenced by several environmental factors, e.g., due to finite natural resources, soil pH, organic matter, and soluble complexes with cations (Al, Fe, and Ca); therefore, P limitation is a major factor that adversely affects crop production. To ensure an efficient and stable agricultural system, the establishment of P efficient crop production is inevitable. Plants have evolved different adaptability mechanisms to overcome these nutrient stresses. Low P adapted responses in plants are considered as an important trait for developing new lines with improved P acquisition, water uptake efficiency, and eventually protect roots from physical impedance. Previous studies showed that, modification in root architecture is potentially correlated with water, nutrient and phosphorus uptake. During P deficit condition, plant root undergoes several phenotypic (root hair density, cluster root, and lateral root) and biochemical modifications (citrate, malate, and acid phosphates secretion) leading to the solubilization and acquisition of unavailable P complexes in soil. This chapter reveals the biochemical, physiological, and molecular mechanisms of plant adaptive responses to low P availability. Moreover, this chapter proposes how plant competes with various abiotic stresses such as P deficiency, drought, and salinity. Screening of plants with superior root hair traits would be an important approach toward the development of P efficient crop varieties.

Publisher

IntechOpen

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3