Vortex Dynamics in the Wake of Planetary Ionospheres

Author:

Pérez-de-Tejada Hector,Lundin Rickard

Abstract

Measurements conducted with spacecraft around Venus and Mars have shown the presence of vortex structures in their plasma wake. Such features extend across distances of the order of a planetary radius and travel along their wake with a few minutes rotation period. At Venus, they are oriented in the counterclockwise sense when viewed from the wake. Vortex structures have also been reported from measurements conducted by the solar wind-Mars ionospheric boundary. Their position in the Venus wake varies during the solar cycle and becomes located closer to Venus with narrower width values during minimum solar cycle conditions. As a whole there is a tendency for the thickness of the vortex structures to become smaller with the downstream distance from Venus in a configuration similar to that of a corkscrew flow in fluid dynamics and that gradually becomes smaller with increasing distance downstream from an obstacle. It is argued that such process derives from the transport of momentum from vortex structures to motion directed along the Venus wake and that it is driven by the thermal expansion of the solar wind. The implications of that momentum transport are examined to stress an enhancement in the kinetic energy of particles that move along the wake after reducing the rotational kinetic energy of particles streaming in a vortex flow. As a result, the kinetic energy of plasma articles along the Venus wake becomes enhanced by the momentum of the vortex flow, which decreases its size in that direction. Particle fluxes with such properties should be measured with increasing distance downstream from Venus. Similar conditions should also be expected in vortex flows subject to pressure forces that drive them behind an obstacle.

Publisher

IntechOpen

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mass Flux in Corkscrew Flow Vortices in the Venus Plasma Wake;Vortex Simulation and Identification;2024-01-24

2. Particle Acceleration in the Venus Plasma Wake;Plasma Science - Recent Advances, New Perspectives and Applications;2023-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3