A Study of the Comparison between Artificial Neural Networks, Logistic Regression and Similarity Weighted Instance-Based Learning in Modeling and Predicting Trends in Deforestation

Author:

Moradi Zeynab,Reza Mikaeili Tabrizi Ali

Abstract

The change in forest cover plays a vital role in ecosystem services, atmospheric carbon balance, and, thus, climate change. In this study, land use maps for the periods 1984 and 2012, derived from Landsat TM satellite imagery, were used. The goal of this study is comparison of three procedures of artificial neural network, logistic regression, and similarity weighted instance-based learning (SIM Weight) to predict spatial trend of forest cover change. The SimWeight considers the nearest instances in the variable space, which are computed based on past changes and the relative importance of the driving variables. The LogReg approach, on the other hand, is a type of generalized linear model that assumes that the current land use pattern reflects the processes of land use in the past. Artificial Neural Network is a nonparametric algorithm that is capable of fitting complex nonlinear functions to find the relations between past changes and their driving variables. Such approaches are expected to produce better fitting between the change potential and their complex relationships with their driving variables. Artificial neural networks in comparison with logistic regression and SimWeight have higher accuracy and less error in modeling and predicting of forest changes.

Publisher

IntechOpen

Reference46 articles.

1. Le Quéré C, Raupach MR, Canadell JG, Marland G, Bopp L, Ciais P, et al. Trends in the sources and sinks of carbon dioxide. Nature Geoscience. 2009;2:831-836

2. Van der Werf GR, Morton DC, DeFries RS, Olivier JGJ, Kasibhatla PS, Jackson RB, et al. CO2 emissions from forest loss. Nature Geoscience. 2009;2:737-738

3. Darvishsefat A, Namiranian M. The Study of Spatial Distribution of Changes in the Northern Forests of Iran. 2004. http://www.GISDevelopment.nat/application/nrm/overview. pp. 1-2

4. Naad Ali A, Mahini E, Feghhi J, mathematics B. Classification of forest areas of Golestan province with maximum possibility method by using satellite pictures+ETM. 2012 Autumn. Environmental Technology and Science Quarterly. 2001;Fourteenth Period(number 3):47-56. (In Persian)

5. Mirakhoorloo KH, Akhavan, R. Study the changes of upper border of north forests by using satellite data. Forest Study and Iran’s Senobar. 2008;Sixteenth Period(number 1):139-148. (In Persian)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3