Corrosion Resistance of Precipitation-Hardened Al Alloys: A Comparison between New Generation Al-Cu-Li and Conventional Alloys

Author:

Donatus Uyime,Oluwatosin Bodunrin Michael,Olayinka Ayotunde,Xavier Milagre Mariana,Rasaq Oloyede Olamilekan,Aribo Sunday,Victor de Sousa Araujo João,de Souza Carvalho Machado Caruline,Costa Isolda

Abstract

The corrosion resistance of conventional (AA2024-T3, AA6082-T6 and AA7050-T7451) and the new generation (AA2050-T84, AA2098-T351, AA2198-T8, and AA2198-T851) precipitation-hardened alloys has been studied and compared using electrochemical and non-electrochemical approaches. The AA6082-T6 was the most resistant alloy followed by the new generation Al-Cu-Li alloys, except the AA2050-T84. All the alloys exhibited pseudo-passivity, except for the AA2024-T3 alloy which presented the highest number of pitting sites per cm2 and also exhibited the most insidious form of corrosion amongst the alloys tested. However, the alloy with the highest corrosion depth was the AA2050-T84 alloy followed by the AA2024-T3 and AA7050-T7451 alloys. Intergranular corrosion was associated with rapid rates of penetration. In addition to the microstructural features of the alloys before corrosion, the modes of localized corrosion in the alloys were also influenced by evolving microstructural features (such as re-deposited Cu) during corrosion.

Publisher

IntechOpen

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3