Recent Developments on the Properties of Chalcogenide Thin Films

Author:

Soonmin Ho,Paulraj Immanuel,Kumar Mohanraj,K. Sonker Rakesh,Nandi Pronoy

Abstract

Chalcogenide thin films have attracted a great deal of attention for decades because of their unique properties. The recent developments on thin film-based supercapacitor applications were reported. As a result of sustained efforts, the experimental findings revealed remarkable properties with enhanced fabrication methods. The properties of perovskite solar cells were discussed in terms of crystal structure and phase transition, electronic structure, optical properties, and electrical properties. Perovskite solar cell has gained attention due to its high absorption coefficient with a sharp absorption edge, high photoluminescence quantum yield, long charge carrier diffusion lengths, large mobility, high defect tolerance, and low surface recombination velocity. The thin film-based gas sensors are used for equally the identification and quantification of gases, and hence should be both selective and sensitive to a required target gas in a mixture of gases. Metal chalcogenide materials are considered excellent absorber materials in photovoltaic cell applications. These materials exhibited excellent absorption coefficient and suitable band gap value to absorb the maximum number of photons from sun radiation. The photovoltaic parameters were strongly dependent on various experimental conditions.

Publisher

IntechOpen

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of annealing effects on physical properties of chemically prepared copper oxide thin films;Results in Optics;2023-02

2. Metrological Traceability of Optical Sensor;Advanced Functional Materials for Optical and Hazardous Sensing;2023

3. Advanced of Chalcogenides Based as Hazardous Gas Sensing;Advanced Functional Materials for Optical and Hazardous Sensing;2023

4. Perovskite-Based Gas Sensors;Smart Nanostructure Materials and Sensor Technology;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3