Abstract
There has been a renewed interest in the development of surface acoustic wave (SAW) biosensors because they hold great promise for opening new frontiers in biology and medicine. The promise of SAW technology is grounded in the advantages SAW devices hold over traditional laboratory techniques used in biological and medical laboratories. These advantages include having smaller sizes to allow greater portability, using smaller sample volumes, requiring lower power requirements, the ability to integrate them into microfluidic platforms, and their compatibility with smart devices such as smartphones. The devices offer high sensitivity and can be designed to allow microfluidic interfacing. Other major advantages of SAW-based technologies include the fact that they can be operated remotely in harsh conditions without the need for an AC power supply. Their compatibility with lab-on-a-chip systems allows the creation of fully integrated devices with the ability to isolate the sample from the operator. In this mini-review, we will discuss SAW devices and their ability to enable a variety of applications in Biology and Medicine. The operating principles of the SAW biosensors will be discussed along with some technological trends and developments.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献