Drought Stress: Manifestation and Mechanisms of Alleviation in Plants

Author:

Atta Kousik,Pratap Singh Aditya,Adhikary Saju,Mondal Subhasis,Dewanjee Sujaya

Abstract

Drought can be referred to as a meteorological period without significant rainfall and it is one of such major abiotic stresses that contributes to a huge reduction in crop yield throughout the world. Plant shows a broad range of physiological, morphological, and biochemical changes such as reduced photosynthetic accumulation, altered gene expression, etc. Under the drought stress which ultimately causes reduced growth as well as poor grain yield. Drought stressconditions trigger production of ROS, which disrupts the dynamic balance between ROS production and ROS scavenging systems and its accumulation depends on the intensity as well as duration of water stress, and it varies among species. A plant species that has a better inherited genetic response allowing it to rapidly deploy its antioxidant enzymatic and non-enzymatic defense system, can tolerate drought better than a plant species with a poor antioxidant defense system. Furthermore, enzyme and protein encoding drought specific genes have the ability to enhance drought tolerance. These two enzymatic and genetic engineering strategies are unique and vital tools, which can be used to help alleviate the world’s future problems related to energy, food, and environmental stresses, particularly drought. This chapter attempts to discuss developments in understanding effects of drought stress and underlying mechanisms in plants for its alleviation.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3