Lipid Metabolic Defects and Lipid-Dependent Gating of Voltage-Gated Ion Channels

Author:

Jiang Qiu-Xing,Chin Felix

Abstract

Eukaryotic cells contain phospholipids and nonphospholipids. The latter lack phosphodiester groups in their head group regions. Lipid-dependent gating of voltage-gated ion channels represents a steady-state energetic effect of nonphospholipids in favoring the resting state of voltage-sensor domains (VSDs) of the channels. It suggests adaptation of ion channels to lipid compositions in their native niche and significant roles of low-to-intermediate affinity lipid-binding sites at the channels. The nonphospholipids include glycoglycerolipids, glycosphingolipids, ceramides, cholesterol or cholesterol esters, diacylglycerol (DAG), fatty acids, cation lipids, etc. Change in relative ratios of phospholipids to nonphospholipids can shift the energetic levels of the VSDs and the gating of these channels, which in turn may alter excitability in certain cells. It is expected that reduced relative abundance of nonphospholipids / phospholipids in plasma membranes may change resting transmembrane potential or gating transitions of voltage-gated Na or K channels. The net results will be a change in action potential firing at least in certain areas of an excitable cell. Such changes in the central nervous system (CNS) are anticipated to affect brain functions and contribute to early-onset neurological phenotypes observed in patients carrying lipid metabolic defects. We will describe the basics of lipid-dependent gating and review its projected links to phenotypes of monogenic lipid metabolic defects and related changes of lipid composition in cell membranes as well as altered neuronal excitability in CNS. However, lack of high-resolution techniques to measure lipid composition around individual channels in cell membranes has been limiting the studies of direct connections between lipid redistribution caused by metabolic defects and altered ion channel activities. Potential solutions will be described for future studies.

Publisher

IntechOpen

Reference73 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3