FAIR Data Model for Chemical Substances: Development Challenges, Management Strategies, and Applications

Author:

Jeliazkova Nina,Kochev Nikolay,Tancheva Gergana

Abstract

Data models for representation of chemicals are at the core of cheminformatics processing workflows. The standard triple, (structure, properties, and descriptors), traditionally formalizes a molecule and has been the dominant paradigm for several decades. While this approach is useful and widely adopted from academia, the regulatory bodies and industry have complex use cases and impose the concept of chemical substances applied for multicomponent, advanced, and nanomaterials. Chemical substance data model is an extension of the molecule representation and takes into account the practical aspects of chemical data management, emerging research challenges and discussions within academia, industry, and regulators. The substance paradigm must handle a composition of multiple components. Mandatory metadata is packed together with the experimental and theoretical data. Data model elucidation poses challenges regarding metadata, ontology utilization, and adoption of FAIR principles. We illustrate the adoption of these good practices by means of the Ambit/eNanoMapper data model, which is applied for chemical substances originating from ECHA REACH dossiers and for largest nanosafety database in Europe. The Ambit/eNanoMapper model allows development of tools for data curation, FAIRification of large collections of nanosafety data, ontology annotation, data conversion to standards such as JSON, RDF, and HDF5, and emerging linear notations for chemical substances.

Publisher

IntechOpen

Reference42 articles.

1. Gasteger J, Engel T, editors. Chemoinformatics Basic Concepts and Methods. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA; 2018. p. 575

2. Massart D, Vandeginste BG, Kaufman L, Demin S, Michotte Y. Chemometrics: A Textbook. Elsevier Science (Verlag); 1988. p. 464. ISBN: 9780080868295

3. Wilkinson MD, Dumontier M, IjJ A, Appleton G, Axton M, Baak A, et al. The FAIR guiding principles for scientific data management and stewardship. Scientific Data. 2016;3:1-9. DOI: 10.1038/sdata.2016.18

4. McNaught AD, Blackwell AW. IUPAC. In: Compendium of Chemical Terminology Chemical Substance. 2014. 2nd ed. Available from: https://goldbook.iupac.org/terms/view/C01039 . p. 2014. DOI: 10.1351/goldbook.C01039

5. ECHA (REACH). ECHA What is a substance? [Internet]. Available from: https://echa.europa.eu/support/substance-identification/what-is-a-substance. [Accessed: June 12, 2022]

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3