Precision in Agriculture Decision Making Based on Machine Learning

Author:

Bhimanpallewar Ratnmala,Narasinga Rao M.R.

Abstract

Farming is the one of the major occupations in India. Increase in population is increasing the demand of food, whereas soil degradation causing decrease in yield. Technology is contributing in agriculture domain through software and hardware enhancement. One of the software-based contribution is for predicting the suitable crop. Same field can be suitable for one crop and not for another one, so it is better to choose the one which can lead to better yield. There are many predictive algorithms available. Algorithms which can work for suitability analysis need to test and choose the best one. Such predictive algorithms need dataset in appropriate format. Once the quality data is available correct predictions can be made. Data mining, machine learning are the branches comprise of algorithms, which can be trained based on dataset. Here we are introducing algorithms for decision making based on field data.

Publisher

IntechOpen

Reference29 articles.

1. Food and Agriculture Organization of the United Nations (FAO). India Country Programming Framework. 2016; Available from: http://www.fao.org/3/a-bp575e.pdf

2. FAO_Chapter 6 - Causes of land degradation [Internet]. United Nation: FAO; Available from: http://www.fao.org/docrep/v4360e/V4360E00.htm#Contents

3. Timespoints TOI. Kolhapur Cancer news dated Aug 30 2018. Times of India [Internet]. 2018;1-18. Available from: http://timesofindia.indiatimes.com/articleshow/66977019.cms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppst

4. Ameen A, Raza S. International Journal of Advances in Scientific Research Green Revolution: A Review QR Code *Correspondence Info. Int J Adv Sci Res [Internet]. 2017;3(12):129-37. Available from: https://doi.org/10.7439/ijasr.v3i12.4410

5. Flachs A. Encyclopedia of Food and Agricultural Ethics. Encycl Food Agric Ethics. 2016;(November)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3