Intelligent Mine Periphery Surveillance Using Microwave Radar

Author:

Kumar Singh Pritam,Kumar Chaulya Swades,Kumar Singh Vinod

Abstract

This paper deals with an intelligent mine periphery surveillance system, which has been developed by CSIR-Central Institute of Mining and Fuel Research, Dhanbad, India, as an aid for keeping constant vigilance on a selected area even in adverse weather conditions like foggy weather, rainy weather, dusty environment, etc. The developed system consists of a frequency modulated continuous wave radar, a pan-tilt camera, a wireless sensor network, a fast dedicated graphics processing unit, and a display unit. It can be spotting an unauthorized vehicle or person into the opencast mine area, thereby avoiding a threat to safety and security in the area. When an intrusion is detected, the system automatically gives an audio-visual warning at the intrusion site where the radar is installed as well as in the control room. The system has the facility to record the intrusion data as well as video footage with timestamp events in the form of a log. Further, the system has a long-range detection capability covering around 400 m distance with an integration facility using a dynamic wireless sensor network for deploying multiple systems to protect the extended periphery of an opencast mine. The field trial of this low-cost mine periphery surveillance system has been carried out at Tirap Opencast Coal Mine of North Eastern Coalfields in Margherita Area, Assam, India and it has proved its efficacy in preventing revenue loss due to illicit mining, unauthorized transportation of minerals, and ensuring safety and security of the mine to a great extent.

Publisher

IntechOpen

Reference36 articles.

1. Komarov IV, Smolskiy SM. Fundamentals of short-range FM radar. New York (NY): Artech House; 2003.

2. Russell ME, Crain A, Curran A. et al. Millimeter-wave radar sensor for automotive intelligent cruise control (ICC).IEEE Trans. Microw. Theory Tech. 1997; 45(12):2444–2453.

3. Skolnik MI. Radar Handbook. New York: McGraw-Hill; 2008.

4. Skolnik MI. Introduction to Radar Systems. New York: McGraw-Hill; 2003.

5. Ozturk H, Yegin K. Predistorter based K-Band FMCW radar for vehicle speed detection. Proceedings of the 17th IEEE International Radar Symposium Conference, Krakow, Poland; 2016:1–4.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3