Evaluating Steady-State Visually Evoked Potentials-Based Brain-Computer Interface System Using Wavelet Features and Various Machine Learning Methods

Author:

Sayilgan Ebru,Kemal Yuce Yilmaz,Isler Yalcin

Abstract

Steady-state visual evoked potentials (SSVEPs) have been designated to be appropriate and are in use in many areas such as clinical neuroscience, cognitive science, and engineering. SSVEPs have become popular recently, due to their advantages including high bit rate, simple system structure and short training time. To design SSVEP-based BCI system, signal processing methods appropriate to the signal structure should be applied. One of the most appropriate signal processing methods of these non-stationary signals is the Wavelet Transform. In this study, we investigated both the effect of choosing a mother wavelet function and the most successful combination of classifier algorithm, wavelet features, and frequency pairs assigned to BCI commands. SSVEP signals that were recorded at seven different stimulus frequencies (6–6.5 – 7 – 7.5 – 8.2 – 9.3 – 10 Hz) were used in this study. A total of 115 features were extracted from time, frequency, and time-frequency domains. These features were classified by a total of seven different classification processes. Classification evaluation was presented with the 5-fold cross-validation method and accuracy values. According to the results, (I) the most successful wavelet function was Haar wavelet, (II) the most successful classifier was Ensemble Learning, (III) using the feature vector consisting of energy, entropy, and variance features yielded higher accuracy than using one of these features alone, and (IV) the highest performances were obtained in the frequency pairs with “6–10”, “6.5–10”, “7–10”, and “7.5–10” Hz.

Publisher

IntechOpen

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3