Author:
Sayilgan Ebru,Kemal Yuce Yilmaz,Isler Yalcin
Abstract
Steady-state visual evoked potentials (SSVEPs) have been designated to be appropriate and are in use in many areas such as clinical neuroscience, cognitive science, and engineering. SSVEPs have become popular recently, due to their advantages including high bit rate, simple system structure and short training time. To design SSVEP-based BCI system, signal processing methods appropriate to the signal structure should be applied. One of the most appropriate signal processing methods of these non-stationary signals is the Wavelet Transform. In this study, we investigated both the effect of choosing a mother wavelet function and the most successful combination of classifier algorithm, wavelet features, and frequency pairs assigned to BCI commands. SSVEP signals that were recorded at seven different stimulus frequencies (6–6.5 – 7 – 7.5 – 8.2 – 9.3 – 10 Hz) were used in this study. A total of 115 features were extracted from time, frequency, and time-frequency domains. These features were classified by a total of seven different classification processes. Classification evaluation was presented with the 5-fold cross-validation method and accuracy values. According to the results, (I) the most successful wavelet function was Haar wavelet, (II) the most successful classifier was Ensemble Learning, (III) using the feature vector consisting of energy, entropy, and variance features yielded higher accuracy than using one of these features alone, and (IV) the highest performances were obtained in the frequency pairs with “6–10”, “6.5–10”, “7–10”, and “7.5–10” Hz.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献