Sequential Mini-Batch Noise Covariance Estimator

Author:

Kim Hee-Seung,Zhang Lingyi,Bienkowski Adam,R. Pattipati Krishna,Sidoti David,Bar-Shalom Yaakov,L. Kleinman David

Abstract

Noise covariance estimation in an adaptive Kalman filter is a problem of significant practical interest in a wide array of industrial applications. Reliable algorithms for their estimation are scarce, and the necessary and sufficient conditions for identifiability of the covariances were in dispute until very recently. This chapter presents the necessary and sufficient conditions for the identifiability of noise covariances, and then develops sequential mini-batch stochastic optimization algorithms for estimating them. The optimization criterion involves the minimization of the sum of the normalized temporal cross-correlations of the innovations; this is based on the property that the innovations of an optimal Kalman filter are uncorrelated over time. Our approach enforces the structural constraints on noise covariances and ensures the symmetry and positive definiteness of the estimated covariance matrices. Our approach is applicable to non-stationary and multiple model systems, where the noise covariances can occasionally jump up or down by an unknown level. The validation of the proposed method on several test cases demonstrates its computational efficiency and accuracy.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3