Deep Learning Network for Classifying Target of Same Shape using RCS Time Series

Author:

Narasimhamurthy Rashmi,Ibrahim Khalaf Osamah

Abstract

The main intension of this work is to find the warhead and decoy classification and identification. Classification of radar target is one of the utmost imperatives and hardest practical problems in finding out the missile. Detection of target in the pool of decoys and debris is one of the major radas technologies widely used in practice. In this study we mainly focus on the radar target recognition in different shapes like cone, cylinder and sphere based on radar cross section (RCS). RCS is a critical element of the radar signature that is used in this work to identify the target. The concept is to focus on new technique of ML for analyzing the input data and to attain a better accuracy. Machine learning has had a significant impact on the entire industry as a result of its high computational competency for target prediction with precise data analysis. We investigated various machine learning classifiers methods to categorize available radar target data. This chapter summarizes conventional and deep learning technique used for classification of radar target.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3