Sparse Linear Antenna Arrays: A Review

Author:

Patwari Ashish

Abstract

Linear sparse antenna arrays have been widely studied in array processing literature. They belong to the general class of non-uniform linear arrays (NULAs). Sparse arrays need fewer sensor elements than uniform linear arrays (ULAs) to realize a given aperture. Alternately, for a given number of sensors, sparse arrays provide larger apertures and higher degrees of freedom than full arrays (ability to detect more source signals through direction-of-arrival (DOA) estimation). Another advantage of sparse arrays is that they are less affected by mutual coupling compared to ULAs. Different types of linear sparse arrays have been studied in the past. While minimum redundancy arrays (MRAs) and minimum hole arrays (MHAs) existed for more than five decades, other sparse arrays such as nested arrays, co-prime arrays and super-nested arrays have been introduced in the past decade. Subsequent to the introduction of co-prime and nested arrays in the past decade, many modifications, improvements and alternate sensor array configurations have been presented in the literature in the past five years (2015–2020). The use of sparse arrays in future communication systems is promising as they operate with little or no degradation in performance compared to ULAs. In this chapter, various linear sparse arrays have been compared with respect to parameters such as the aperture provided for a given number of sensors, ability to provide large hole-free co-arrays, higher degrees of freedom (DOFs), sharp angular resolutions and susceptibility to mutual coupling. The chapter concludes with a few recommendations and possible future research directions.

Publisher

IntechOpen

Reference104 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SFA: A Robust Sparse Fractal Array for Estimating the Directions of Arrival of Signals;Circuits, Systems, and Signal Processing;2024-08-01

2. Sparse Array Mutual Coupling Reduction;IEEE Open Journal of Antennas and Propagation;2024-02

3. Comparative Analysis of SVM and CNN for Sonar Signal Classification Using Sparse Arrays;IEEE Access;2024

4. Investigations on the Performance Comparison of Co-Prime Array with and without interpolation for DOA Estimation;IRO Journal on Sustainable Wireless Systems;2023-03-09

5. Ternary redundant sparse linear array design with high robustness;Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University;2023-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3