Thermochemical Conversion of Algal Based Biorefinery for Biofuel

Author:

Vaniyankandy Arosha,Ray Bobita,Karthikeyan Subburamu,Rakesh Suchitra

Abstract

Algae being the photosynthetic organism, currently considered as underexplored species for biofuel production in the entire global region and yet need to be explored more. In presence of algal based theory regarding the thermochemical process, though many researchers have been proceeding with the experiment but have got to stretch it further. This process aims to produce energy and bioactive compounds using algal biomass as a raw material. The current study relates with the thermochemical conversion process and mainly reflects about the algal biomass conversion into biorefinery production, in a short time with easier and economically viable points, unlike other biochemical and chemical conversion processes. In thermochemical process, high temperatures used during the process produces different biofuels including solid, liquid, gaseous biofuels. This thermal decomposition process of algal biomass can be categorized into Gasification, Pyrolysis, Direct combustion, Hydrothermal process, and Torrefaction. Hence, in this study, it briefs on different type of processes for better production of biofuel as well as its significant merit and demerit comparisons of each process.

Publisher

IntechOpen

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Liquid Bio-Fuels From Algal Materials;Reference Module in Earth Systems and Environmental Sciences;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3