Martian Moons and Space Transportation Using Chemical and Electric Propulsion Options

Author:

Palaszewski Bryan

Abstract

Using chemical and nuclear electric propulsion for the exploration of the Martian moons will be investigated. Both oxygen/hydrogen chemical propulsion and nuclear electric propulsion with 500 kilowatt electric (kWe) to 10 megawatt electric (MWe) reactors will be assessed. The initial masses, propellant masses, and trip times for a variety of space vehicle payload masses will be compared. For high energy orbital transfer, the nuclear electric propulsion vehicles required a small fraction of the propellant mass over oxygen/hydrogen orbital transfer vehicles (OTVs). The moons, Phobos and Deimos, may hold resources for refueling future space vehicles. In-situ resource utilization (ISRU) can be a powerful method of reducing Earth dependence on space vehicle propellants, liquid water, and breathing gases. Historical studies have identified the potential of water in carbonaceous chondrites on the moons. The moon-derived propellants OTVs that move payloads between the moons and to other important operational Mars orbits. Also, the propellants have been suggested to support reusable Mars landers. To extract the water, the mined mass, its volume and the mining time were estimated. The water mass fraction may be as low as 2x10−4. Very large masses were needed to be extracted for up to 100 MT of water.

Publisher

IntechOpen

Reference18 articles.

1. Sheehan, W., The Planet Mars: A History of Observation & Discovery, University of Arizona Press, 1996

2. Mars fact sheet, National Space Science Data Center, nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html

3. Veverka, Joseph; Noland, Michael; Sagan, Carl; Pollack, James; Quam, Lynn; Tucker, Robert; Eross, Botand; Duxbury, Thomas; Green, William (1974). "A Mariner 9 Atlas of the Moons of Mars," Icarus 23 (2): pp. 206-289

4. Bernard Godard, Frank Budnik, Pablo Munoz, Trevor Morley, and Vishnu Janarthanan, “ORBIT DETERMINATION OF ROSETTA AROUND COMET 67P/ CHURYUMOV-GERASIMENKO,” 2015. https://issfd.org/2015/files/downloads/papers/124_Godard.pdf

5. Godard B, Budnik F, Muñoz P, et al. Orbit determination of Rosetta around Comet 67P/Churyumov-Gerasimenko. In: Proceedings of 25th International Symposium on Space Flight Dynamics. Munich, 2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3