Author:
Vineeth T.V.,Kumar Shrvan,Shukla Monika,Chinchmalatpure Anil,Chander Sharma Parbodh
Abstract
Soil salinization is a global and climatic phenomenon that affects various spheres of life. The present rate of salinization is perilously fast because of global climate change and associated events leading to enhanced land degradation, loss of soil fertility and crop productivity. In this chapter, we tried to focus on the arid and semiarid regions of India along with our coastal zone which are economically fragile regions and need much closer attention. In future, India will face extreme pressure on its land resources in agriculture because of likely rapid degradation of these resources. Thus, salt affected soils must be brought under cultivation by adopting site specific strategies to ensure national food and nutritional security. In this regard, a comprehensive review of the major halophytes of these ecological zones, its mechanism of salt tolerance, ecological and economic potential is done. The potential applications of saline land vegetation including halophytes in climate change mitigation, phytoremediation, desalination, food, secondary metabolite and nutraceutical production, medicine, and saline agriculture have been discussed. Further, we tried to focus on popular farmer adopted halophytic species including edible ones, their uses, products of economic significance etc. which is highly imperative for effective utilization of these saline soils leading to improved livelihood and sustenance of resource poor farmers along with improved ecological balance.
Reference158 articles.
1. United Nation. United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019 [Internet]. 2019. Available from: https://population.un.org/wpp/Download/Probabilistic/Population/ [Accessed: 2020-08-20]
2. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C. Food security: the challenge of feeding 9 billion people. Science. 2010;327:812-818. DOI: 10.1126/science.1185383
3. Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, NasimW, Adkins S, Saud S, Ihsan MZ, Alharby H, Wu C, Wang D, Huang J. Crop production under drought and heat stress: Plant responses and management Options. Frontiers in Plant Science. 2017;8:1147-1162. DOI: 10.3389/fpls.2017.01147
4. Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Khan FA, Khan F, Chen Y, Wu C, Tabassum MA, Chun MX, Afzal M, Jan A, Jan MT, Huang J. Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environmental Science and Pollution Research. 2014;22(7):4907-4921. DOI: 10.1007/s11356-014-3754-2
5. Fahad S, Hussain S, Saud S, Tanveer M, Bajwa AA, Hassan S, Shah AN, Ullah A, Wu C, Khan FA, Shah F, Ullah S, Chen Y, Huang J. A biochar application protects rice pollen from high-temperature stress. Plant Physiology and Biochemistry. 2015;96:281-287. DOI: 10.1016/j.plaphy.2015.08.009
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献