Author:
Firat Mehmet,Şener Bora,Arda Akşen Toros,Esener Emre
Abstract
Sheet metal forming techniques are a major class of stamping and manufacturing processes of numerous parts such as doors, hoods, and fenders in the automotive and related supplier industries. Due to series of rolling processes employed in the sheet production phase, automotive sheet metals, typically, exhibit a significant variation in the mechanical properties especially in strength and an accurate description of their so-called plastic anisotropy and deformation behaviors are essential in the stamping process and methods engineering studies. One key gradient of any engineering plasticity modeling is to use an anisotropic yield criterion to be employed in an industrial content. In literature, several orthotropic yield functions have been proposed for these objectives and usually contain complex and nonlinear formulations leading to several difficulties in obtaining positive and convex functions. In recent years, homogenous polynomial type yield functions have taken a special attention due to their simple, flexible, and generalizable structure. Furthermore, the calculation of their first and second derivatives are quite straightforward, and this provides an important advantage in the implementation of these models into a finite element (FE) software. Therefore, this study focuses on the plasticity descriptions of homogeneous second, fourth and sixth order polynomials and the FE implementation of these yield functions. Finally, their performance in FE simulation of sheet metal cup drawing processes are presented in detail.