Physiological and Molecular Adaptation of Sugarcane under Drought vis-a-vis Root System Traits

Author:

Dhansu Pooja,Kumar Raja Arun,Vengavasi Krishnapriya,Kumar Ravinder,S. Pazhany Adhini,Kumar Ashwani,Kumar Naresh,Mann Anita,Kant Pandey Shashi

Abstract

Among various abiotic stresses, water is reported as a rare entity in many parts of the world. Decreased frequency of precipitation and global temperature rise will further aggravate the situation in future. Being C4 plant, sugarcane requires generous water for the proper growth. Plant root system primarily supports above-ground growth by anchoring in the soil and facilitates water and nutrients uptake from the soil. The plasticity and dynamic nature of roots endow plants for the uptake of vital nutrients from the soil even under soil moisture conditions. In sugarcane, the major part of root system are generally observed in the upper soil layers, while limited water availability shifts the root growth towards the lower soil layer to sustained water uptake. In addition, root traits are directly related to physiological traits of the shoot to cope up with water limited situations via reduction in stomatal conductance and an upsurge in density and deep root traits, adaptations at biochemical and molecular level which includes osmotic adjustment and ROS detoxification. Under stressed conditions, these complex interactive systems adjust homeo-statically to minimize the adverse impacts of stress and sustain balanced metabolism. Therefore, the present chapter deals with physiological and biochemical traits along with root traits that helps for better productivity of sugarcane under water-limited conditions.

Publisher

IntechOpen

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3