Enhancement and Identification of Microbial Secondary Metabolites

Author:

M. Shuikan Ahmed,N. Hozzein Wael,M. Alzharani Mohammed,N. Sandouka Maram,A. Al Yousef Sulaiman,A. Alharbi Sulaiman,Damra Eman

Abstract

Screening for microbial secondary metabolites (SMs) has attracted the attention of the scientific community since 1940s. In fact, since the discovery of penicillin, intensive researches have been conducted worldwide in order to detect and identify novel microbial secondary metabolites. As a result, the discovery of novel SMs has been decreased significantly by using traditional experiments. Therefore, searching for new techniques to discover novel SMs was one of the most priority objectives. However, the development and advances of omics-based techniques such as metabolomics and genomics have revealed the potential of discovering novel SMs which were coded in the microorganisms’ DNA but not expressed in the lab media or might be produced in undetectable amount by detecting the biosynthesis gene clusters (BGCs) that are associated with the biosynthesis of secondary metabolites. Nowadays, the development and integration of gene editing tools such as CRISPR-Cas9 in metabolomics provide a successful platform for the identification and detection of known and novel SMs and also to increase the production of SMs.

Publisher

IntechOpen

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3