Abstract
Orthogonal polynomials have been studied extensively by legender in 1784. They are representatively related with typically real functions, which is played an important role in the geometric function theory, and and its role of estimating coefficient bounds.
This chapter associates certain bi-univalent functions with certain orthogonal polynomials such as Gegnbauer polynomials, and Horadam polymials, and then explores some properties of the subclasses in hand.
This Chapter is concerned with the connection between Orthogonal polynomials and bi-univalent functions. Our purpose is to inroduce certain classes of bi unvalent functions by mean of Gegenbauer polynomials and Hordam polynomials. Bounds for the initial coefficients of |a_{2}| and |a_{3}|, and results related to Fekete–Szegö functional are obtained.
Reference29 articles.
1. Legendre A. Recherches sur lattraction des spheroides homogenes, Memoires presentes par presents par divers sa vents al. Vol. 10. Paris: Academie des Sciences de lInstitut de France; 1785. pp. 411-434
2. Fekete M, Szegö G. Eine Bemerkung Ã41 ber ungerade schlichte Funktionen. Journal of the London Mathematical Societ. 1933;(2):85-89
3. Duren P. Univalent functions, Grundlehren der Mathematischen Wissenschaften 259. New York: Springer-Verlag; 1983
4. Lewin M. On a coefficient problem for bi-univalent functions. Proceeding of the Amarican Mathematical Society. 1967;(1):63-68
5. Brannan DA, Taha TS. On some classes of bi-unvalent functions. In: Mazhar SM, Hamoui A, Faour NS, editors. Mathematical Analysis and its Applications, Kuwait; 1985. Vol. 3. Oxford: Pergamon Press (Elsevier Science Limited); 1988. pp. 53-60, KFAS Proceedings Series, see also Studia Universitatis Babeş-Bolyai Mathematica. 1986. pp. 70-77