Author:
Zitouna Bessem,Ben Hadj Slama Jaleleddine
Abstract
Flyback converters have been widely used in low- and high-power applications because of their simplicity and low cost. However, they incur electromagnetic compatibility problems which are more difficult to control. The present chapter proposes an efficient modeling method based on the near-field technique to solve real-world radiation problems of the power electronics circuits. Firstly, for the characterization of an AC/DC flyback converter, several experimental measurements of the magnetic near field are performed in the time domain over the converter. Subsequently, we have applied the time domain electromagnetic inverse method based on the genetic algorithms on the measured signals to find the equivalent radiating sources of the studied circuit. The accuracy and the efficiency of the proposed approach have been demonstrated by the good agreement between cartographies of the near magnetic field components calculated using the developed model and those measured. Finally, the developed equivalent model has been used to predict cartographies of other components of the magnetic field which will be compared to measured cartographies. This confirms that the identified equivalent sources can represent real sources in the studied structure. The proposed method could be used for diagnosis and fault location in power electronics systems.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献