The CFD Based Method for Determining Heat Transfer Correlations on Individual Rows of Plate-Fin and Tube Heat Exchangers

Author:

Taler Dawid,Taler Jan,Trojan Marcin

Abstract

The chapter provides an analytical mathematical model of a car radiator, which includes different heat transfer coefficients (HTCs) on the first and second row of pipes. The air-side HTCs in the first and second row of pipes in the first and second pass were calculated using the correlations for the Nusselt number, which were determined by CFD simulation using the ANSYS software. Mathematical models of two radiators were built, one of which was manufactured of round tubes and the other of oval tubes. The model permits the determination of thermal output of the first and second row of tubes in the first and second pass. The small relative differences between the thermal capacities of the heat exchanger occur for different and uniform HTCs. However, the heat flow rate in the first row is much greater than the heat flow in the second row if the air-side HTCs are different on the first and second tube row compared to a case where the HTC is uniform in the whole heat exchanger. The heat transfer rates in both radiators calculated using the developed mathematical model were compared with those determined experimentally. The method for modeling of plate-fin and tube heat exchanger (PFTHE) proposed in the paper does not require empirical correlations to calculate HTCs both on the air side and on the inner surfaces of pipes. The presented method of calculating PFTHEs, considering different air-side HTCs evaluated using CFD modeling, may considerably reduce the cost of experimental research concerning new design heat exchangers implemented in manufacturing.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3