Surface-Confined Ruthenium Complexes Bearing Benzimidazole Derivatives: Toward Functional Devices

Author:

Haga Masa-aki

Abstract

Substitutionally inert ruthenium complexes bearing benzimidazole derivatives have unique electrochemical and photochemical properties. In particular, proton coupled electron transfer (PCET) in ruthenium–benzimidazole complexes leads to rich redox chemistry, which allows e.g. the tuning of redox potentials or switching by deprotonation. Using the background knowledge from acquired from their solution-state chemistry, Ru complexes immobilized on electrode surfaces have been developed and these offer new research directions toward functional molecular devices. The integration of surface-immobilized redox-active Ru complexes with multilayer assemblies via the layer-by-layer (LbL) metal coordination method on ITO electrodes provides new types of functionality. To control the molecular orientation of the complexes on the ITO surface, free-standing tetrapodal phosphonic acid anchor groups were incorporated into tridentate 2,6-bis(benzimidazole-2-yl)pyridine or benzene ligands. The use of the LbL layer growth method also enables “coordination programming” to fabricate multilayered films, as a variety of Ru complexes with different redox potentials and pKa values are available for incorporation into homo- and heterolayer films. Based on this strategy, many functional devices, such as scalable redox capacitors for energy storage, photo-responsive memory devices, proton rocking-chair-type redox capacitors, and protonic memristor devices have been successfully fabricated. Further applications of anchored Ru complexes in photoredox catalysis and dye-sensitized solar cells may be possible. Therefore, surface-confined Ru complexes exhibit great potential to contribute to the development of advanced functional molecular devices.

Publisher

IntechOpen

Reference86 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3