Abstract
In this chapter, we provide some enlightening examples of the application of Clifford algebra in geometry, which show the concise representation, simple calculation, and profound insight of this algebra. The definition of Clifford algebra implies geometric concepts such as vector, length, angle, area, and volume and unifies the calculus of scalar, spinor, vector, and tensor, so that it is able to naturally describe all variables and calculus in geometry and physics. Clifford algebra unifies and generalizes real number, complex, quaternion, and vector algebra and converts complicated relations and operations into intuitive matrix algebra independent of coordinate systems. By localizing the basis or frame of space-time and introducing differential and connection operators, Clifford algebra also contains Riemann geometry. Clifford algebra provides a unified, standard, elegant, and open language and tools for numerous complicated mathematical and physical theories. Clifford algebra calculus is an arithmetic-like operation that can be well understood by everyone. This feature is very useful for teaching purposes, and popularizing Clifford algebra in high schools and universities will greatly improve the efficiency of students to learn fundamental knowledge of mathematics and physics. So, Clifford algebra can be expected to complete a new big synthesis of scientific knowledge.