Variability Analysis of Observational Time Series: An Overview of the Decomposition Methods for Non-stationary and Noisy Signals

Author:

Delage Olivier,Bencherif Hassan,Portafaix Thierry,Bourdier Alain,Tato Loua René,Kirsch Pinheiro Damaris

Abstract

The analysis of observational data sequences in Geophysics consists of characterizing the underlying dynamics. An important preliminary step aims to analyze the variability related to the observed dynamic. The specific objectives related to this step are to remove noise, to determine the overall trend of the observational time series and to identify the relevant components contributing significantly to the original time series variability knowing that their number determines the dimensionality of the observed dynamics. Most of the observational time series have characteristics of non-stationarity and present fluctuations at all-time scales. In this context, variability analysis consists in representing time series in the time-frequency space and requires the development of specific numerical signal decomposition methods. The most commonly used techniques are adaptive and data-driven and among the most cited in the literature are the empirical mode decomposition, the empirical wavelet transform, and singular spectrum analysis. In this work, we describe all of these techniques and evaluate their ability to remove noise and to identify components corresponding to the physical processes involved in the evolution of the observed system and deduce the dimensionality of the associated dynamics. Results obtained with all of these methods on experimental total ozone columns and rainfall time series will be discussed and compared.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3