Abstract
The Traveling Salesman Problem (TSP) is believed to be an intractable problem and have no practically efficient algorithm to solve it. The intrinsic difficulty of the TSP is associated with the combinatorial explosion of potential solutions in the solution space. When a TSP instance is large, the number of possible solutions in the solution space is so large as to forbid an exhaustive search for the optimal solutions. The seemingly “limitless” increase of computational power will not resolve its genuine intractability. Do we need to explore all the possibilities in the solution space to find the optimal solutions? This chapter offers a novel perspective trying to overcome the combinatorial complexity of the TSP. When we design an algorithm to solve an optimization problem, we usually ask the critical question: “How can we find all exact optimal solutions and how do we know that they are optimal in the solution space?” This chapter introduces the Attractor-Based Search System (ABSS) that is specifically designed for the TSP. This chapter explains how the ABSS answer this critical question. The computing complexity of the ABSS is also discussed.