DNA Finger-Printing: Current Scenario and Future

Author:

Sitaram Kadu Sandeep

Abstract

Linearly arranged chemical structure in chromosome is known as DNA. It is a double helix made up of two strands of genetic material spiraled around each other. Each strand has a sequence of bases. There are four types of basis namely adenine, guanine, cytosine and thiamine which are very unique to each individual just like their actual fingerprint. The nitrogen base adenine always binds with thymine and cytosine also always binds with guanine. Thus the DNA profiling unique to each individual is collectively known as DNA fingerprinting. DNA determines individuality or uniqueness of the each human being except in uniovular twins. The chances of complete similarity are one in 30 billion to 300 billion i.e. half the population of world. The technique of DNA fingerprinting was first developed by Dr. Alec Jeffery’s from Britain in 1984. He discovered a minisatellite region close to the human myoglobin gene. He isolated this sequence and used it as a probe to investigate human DNA. He found that the minisatellite probe result was a complex band pattern for each individual. In India, initially it was done at CCMB, Hyderabad by Dr. Lalji Singh. Now there are various centers where DNA fingerprinting is carried out. In Maharashtra it is carried out at Sate Forensic Science Laboratory, Vidya Nagar, Kalina, Mumbai – 400 098 (Phone 022–26670755). Using this technique FBI formally concluded the participation of Mr. Bill Clinton in Monica Lewyninskey case. In India more than 79 cases have been solved by using this technique including important case of Dhanu and Shivarasan alleged assailant of Late Priminister Shr. Rajiv Gandhi, Tandori case, Madhumati murder case etc.

Publisher

IntechOpen

Reference64 articles.

1. Alketbi SK. (2018). The affecting factors of touch DNA. J Forensic Res, an open access journal 9(3), 1-4.

2. Allen M, Nilsson M, Havsjö M, Edwinsson L, Granemo J, Bjerke M: Presentation at the 25th Congress of the International Society for Forensic Genetics. Haloplex and MiSeq NGS for simultaneous analysis of 10 STRs, 386 SNPs and the complete mtDNA genome. 2013, Melbourne, 2-7 September 2013

3. Altman JD. Admissibility of forensic DNA profiling evidence: A movement away from Frye v. United States and a step toward the Federal Rules of evidence: United States v. Jakobetz, 955 F.2d 786 (1992). J Urban Contemp Law 1994; 44:211-222.

4. Ambers A, Wiley R, Novroski N, Budowle B. (2018). Forensic science international: Genetics direct PCR ampli fi cation of DNA from human bloodstains, saliva, and touch samples collected with microFLOQ ® swabs. Forensic Science International: Genetics 32(September 2017):80-87.

5. Andersen MM, Caliebe A, Jochens A, Willuweit S, Krawczak M: Estimating trace-suspect match probabilities for singleton Y-STR haplotypes using coalescent theory. Forensic Sci Int Genet. 2013, 7: 264-271. 10.1016/j.fsigen.2012.11.004.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3