Private SVM Inference on Encrypted Data

Author:

Al Badawi Ahmad

Abstract

This tutorial chapter provides a comprehensive guide to implementing privacy-preserving Support Vector Machine (SVM) inference using Fully Homomorphic Encryption (FHE). We demonstrate a practical solution for secure and private SVM inference on encrypted data, enabling sensitive data analysis while maintaining confidentiality. Through a step-by-step implementation on a real-world dataset, we cover data preparation, SVM model training, and homomorphic inference. Our experimental results on a commodity laptop show that our approach achieves high accuracy with a reasonable latency of nearly 6 seconds for SVM inference. This chapter serves as a valuable resource for practitioners and researchers seeking to apply privacy-preserving techniques to SVM solutions, with significant implications for applications like medical diagnosis, financial prediction, and recommender systems, where data privacy is crucial. By following this tutorial, readers can gain hands-on experience with privacy-preserving SVM inference using FHE.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3