Author:
Matandabuzo Mzukisi,Dovorogwa Delford
Abstract
The development of better and efficient methods of consuming less and/or wasting little resource materials is becoming more important. In this study, pyrolytic waste tyre carbon black residue and commercial grade activated carbon were characterized and evaluated against adsorption of mercury vapor. The performance of the raw carbon black residue and the activated carbon against mercury vapor generated in the laboratory was determined using a designed reactor system. The adsorption of Hg+ was investigated at temperatures ranging from 200 to 280°C for 6 hours. Batch experiments were conducted for the different carbon residue samples and characterization analysis were done before and after adsorption using the spectroscopic, microscopic, and structural techniques to elucidate the structural arrangements and properties of the carbonaceous materials. Spectroscopic analysis of these carbonaceous residues showed a C=C stretching vibration attributed to the lignocellulose aromatic ring at 1657–2000 cm−1. Comparatively, it was also observed that the Infrared spectrum of raw carbon black exhibits less functional groups as compared to the H2SO4-AC and H2O2-AC carbonaceous residues prepared.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献